
10 – surface shading

Copyright 2021 Blair MacIntyre ((CC BY-NC-SA 4.0))

Illumination and Shading

Multiple Light Sources

Obvious summation over m lights:

I = IakaOd + S fattiIpi [kdOd (N ·Li) + ks (Ri ·V)n]
1£ i £m

Shading Models

Surface color in this model = ambient + diffuse + specular

To shade triangles:
1) Per Triangle
2) Per Vertex
3) Per Pixel

Copyright 2021 Blair MacIntyre ((CC BY-NC-SA 4.0))

• Compute one color for polygon
• Use polygon normal in lighting eqs.

• Every pixel is assigned same color

• Fast and simple
• Shade of polygons independent

Shading Models: Per Triangle
(Flat Shading)

• Compute vertex normals
• Average normals of abutting polygons

• Use vertex normal in lighting eqs.
• Linearly interpolate vertex

intensities
• Along edges

• Along scan lines

N1

N2

N3N4 Navg

V1 V2

V3V4

A

Shading Models: Per Vertex
(Gouraud Shading)

B
Vis

Often appears dull, chalky
• Lacks accurate specular

component

• If included, will be averaged
over entire polygon

Flat Shading
Mach banding
• Artifact at discontinuities in

intensity or intensity slope

Gouraud Shading

Shading Models: Per Pixel
(Phong Shading)

• Linearly interpolate vertex normals
• Compute lighting eqs. at each pixel

• Normals must be backmapped to WC

• Can use specular component

Closeup: Flat, Gouraud, Phong

• Polygonal silhouette

• Perspective distortion

Problems with Interpolated Shading

V1 V2

V3V4

A B
Vis

• Scanline/orientation dependent
• Creates temporal aliasing when used to render animation frames:

Problems with Interpolated Shading

?!

= ?

• Shared vertices

• Unrepresentative vertex normals
• Missed specular highlights

• Missed geometry

Problems with Interpolated Shading

A

C

B

