
10 – surface shading

Copyright 2021 Blair MacIntyre ((CC BY-NC-SA 4.0))



Illumination and Shading



Multiple Light Sources

Obvious summation over m lights:

I = IakaOd + S fattiIpi [ kdOd (N ·Li) + ks (Ri ·V)n]
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Shading Models

Surface color in this model = ambient + diffuse + specular

To shade triangles:
1) Per Triangle
2) Per Vertex
3) Per Pixel
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• Compute one color for polygon
• Use polygon normal in lighting eqs.

• Every pixel is assigned same color

• Fast and simple
• Shade of polygons independent 

Shading Models: Per Triangle
(Flat Shading)





• Compute vertex normals
• Average normals of abutting polygons 

• Use vertex normal in lighting eqs.
• Linearly interpolate vertex 

intensities  
• Along edges

• Along scan lines
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Shading Models: Per Vertex
(Gouraud Shading)
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Often appears dull, chalky
• Lacks accurate specular 

component

• If included, will be averaged 
over entire polygon

Flat Shading
Mach banding
• Artifact at discontinuities in 

intensity or intensity slope

Gouraud Shading







Shading Models: Per Pixel
(Phong Shading)

• Linearly interpolate vertex normals
• Compute lighting eqs. at each pixel

• Normals must be backmapped to WC

• Can use specular component







Closeup: Flat, Gouraud, Phong



• Polygonal silhouette

• Perspective distortion

Problems with Interpolated Shading
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• Scanline/orientation dependent
• Creates temporal aliasing when used to render animation frames:

Problems with Interpolated Shading
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• Shared vertices

• Unrepresentative vertex normals
• Missed specular highlights

• Missed geometry  

Problems with Interpolated Shading
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