10 - surface shading

Illumination and Shading

Figure 6.5
Illustrating the difference between local reflection models and shading algorithms. (a) Local reflection models calculate light intensity at any point P on the surface of an object. (b) Shading algorithms interpolate pixel values from calculated light intensities at the polygon vertices.

(b)

Surface Normals

Illumination and Shading

- Illumination Models
- Ambient
- Diffuse
- Attenuation
- Specular Reflection
- Interpolated Shading Models
- Flat, Gouraud, Phong
- Problems

Surface Shading

Illumination Models: Ambient Light

- Simple illumination model

$$
I=I_{\mathrm{a}} k_{\mathrm{a}}
$$

- $I_{\mathrm{a}}=$ ambient light intensity ($I_{\mathrm{aR}}, I_{\mathrm{aG}}, I_{\mathrm{aB}}$)
- $k_{\mathrm{a}}=$ ambient-reflection coefficient ($k_{\mathrm{ar}}, k_{\mathrm{aG}}, k_{\mathrm{aB}}$)
- Uniform across surface

Diffuse Light

- Account for light position
- Ignore viewer position

- Proportional to $\cos \Theta$ between N and L

$$
\begin{aligned}
I & =I_{\mathrm{p}} k_{\mathrm{d}} \cos \Theta \\
& =I_{\mathrm{p}} k_{\mathrm{d}}(N \cdot L)
\end{aligned}
$$

- Model:

$$
I=I_{\mathrm{a}} k_{\mathrm{a}}+I_{\mathrm{p}} k_{\mathrm{d}}(N \cdot L)
$$

Again, Colored Lights

(slightly different, but equivalent, to book)

- O_{d} : diffuse color

$$
O_{d}=\left(O_{d R}, O_{d G}, O_{d B}\right)
$$

- Compute for each component
- i.e. red component is

$$
I_{\mathrm{R}}=I_{\mathrm{aR}} k_{\mathrm{aR}} O_{\mathrm{dR}}+f_{\mathrm{att}} I_{\mathrm{pR}} k_{\mathrm{dR}} O_{\mathrm{dR}}(N \cdot L)
$$

- Note: use O_{d} for ambient and diffuse

Light Intensity Values

- I_{a}, I_{d}
- Represent intensity
- Have R,G,B components
- Do not need to fall in the $0 . .1$ range!
- Often need $l_{\mathrm{d}}>1$
- Final computed $I \leq 1$

Attenuation: Distance

- $f_{\text {att }}$ models distance from light

$$
I=I_{\mathrm{a}} k_{\mathrm{a}}+f_{\mathrm{att}} I_{\mathrm{p}} k_{\mathrm{d}}(N \cdot L)
$$

- Realistic

$$
f_{\mathrm{att}}=1 /\left(\mathrm{d}_{L}{ }^{2}\right)
$$

- Hard to control, so often use

$$
f_{\mathrm{att}}=1 /\left(c_{1}+c_{2} \mathrm{~d}_{L}+c_{3} \mathrm{~d}_{L}{ }^{2}\right)
$$

Recall Reflectance Equation

Attenuation: Atmospheric (fog, haze)

- z_{n} and z_{f} : near and far depth-cue plane
- s_{n} and s_{f} : scale factors
- I_{dc} : depth cue color
- Given $z_{\mathrm{n}}<z_{0}<z_{\mathrm{f}}$ interpolate $s_{n}<s_{0}<s_{f}$
- Adjust intensity

$$
l^{\prime}=s_{0} I+\left(1-s_{0}\right) / \mathrm{dc}
$$

Specular Reflection: Phong Model

- Account for viewer position
- Create highlights
- Based on $\cos ^{n} \alpha=(R \cdot V)^{n}$
- Larger n, smaller highlight
- k_{s} : specular reflection coef.

$$
I=I_{\mathrm{a}} k_{\mathrm{a}} O_{\mathrm{d}}+f_{\mathrm{att}} I_{\mathrm{p}}\left[k_{\mathrm{d}} O_{\mathrm{d}}(N \cdot L)+k_{\mathrm{s}}(R \cdot V)^{n}\right]
$$

Specular Power

Materials, Highlight Color

Multiple Light Sources

Obvious summation over m lights:

$$
I=I_{\mathrm{a}} k_{\mathrm{a}} O_{\mathrm{d}}+\sum_{1 \leq i \leq \mathrm{m}} \mathrm{f}_{\mathrm{atti}} l_{\mathrm{p} i}\left[k_{\mathrm{d}} O_{\mathrm{d}}\left(N \cdot L_{i}\right)+k_{\mathrm{s}}\left(R_{i} \cdot V\right)^{n}\right]
$$

