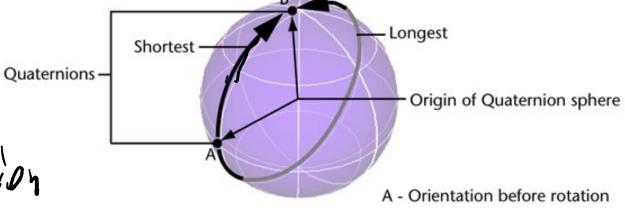
github ex2

11 - animation

Should (Group) Object 3D scale swaternian position Group Rotation Trans, Scale T. R.S

Kertrame Ammation

Interpolating "values"


- Want to interpolate position, orientation, scale ... also, color, etc
 - Anything that can be expressed parametrically

at time to wall an object to be at position x, & at time to at position x2

need $t = t_1$ want p = 0 as parameter for parameter for parametric form of line to be, $x = \frac{\xi}{t_1}$ and $\frac{\xi}{t_2 - t_1} = \frac{\xi}{2}$ $\frac{\xi}{t_1} = \frac{\xi}{2}$ $\frac{\xi}{t_2} = \frac{\xi}{2}$ $\frac{\xi}{t_1} = \frac{\xi}{2}$ $\frac{\xi}{t_2} = \frac{\xi}{2}$ $\frac{\xi}{t_1} = \frac{\xi}{2}$ $\frac{\xi}{t_2} = \frac{\xi}{2}$ $p = 3(t-2) + 4 = \omega \text{ hen } t \text{ is botween } 2k4$ p is 4 = 5/0essentially: (convert (t, t) => (0,1)
convert with parametric line convert
to X

Interpolate Angles using Quaternions

pose" is a 30 orientation

Orientation after rotation

THREE, Quoterion ()

Spherical Linear Rotation (5LERP)

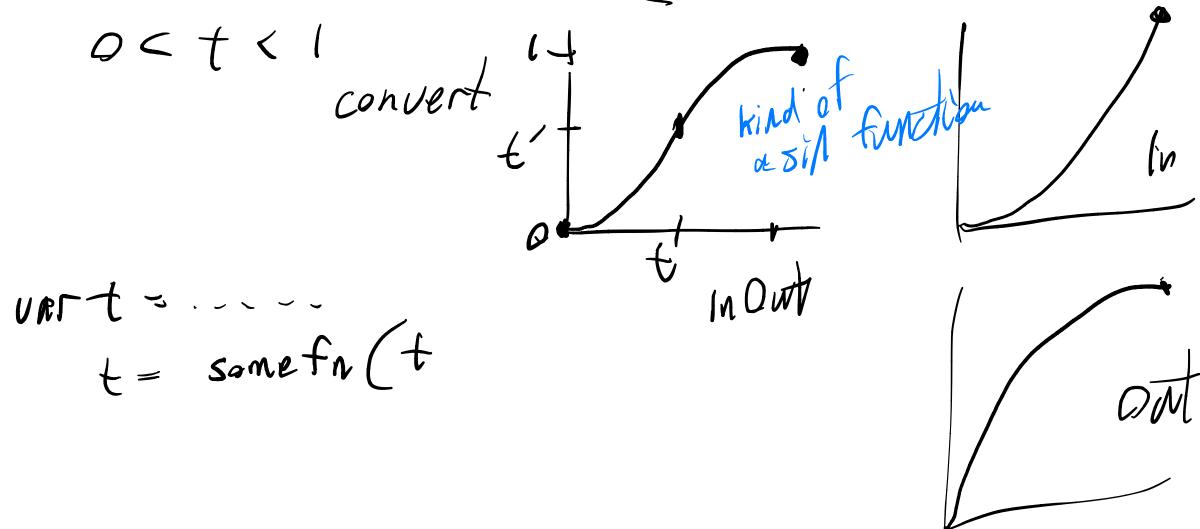
Quaternion rotation interpolation

Animate time from 0..1 and interpolate value

$$t_1 = 2$$

$$t_2 = 5$$

$$Code Ct = current + ine) = assume between text a
$$t_3 = (t - t_1)(t_2 - t_1)$$$$


Specifying time: absolute or speed

start & end values for pos, rot,
start Time

velocity (pos)

ang'ular velocity

Non-linear motion: easing functions

Applying Traditional Animation to 3D

- Based on paper (read if you are interested)
 - John Lasseter, "Principles of traditional animation applied to 3D computer animation", Proceedings of SIGGRAPH '87, pp. 35 44
- Additional papers, applying it to 2D Uis (if you are interested)
 - Bay-Wei Chang, David Ungar, "Animation: From Cartoons to the User Interface", Proceedings of UIST' 93, pp.45-55.
 - Scott E. Hudson, John T. Stasko, "Animation Support in a User Interface Toolkit: Flexible, Robust and Reusable Abstractions", Proceedings of UIST '93, pp.57-67.

Why Animation?

- Gives a feeling of reality and liveness
 - "animation" = "bring to life"
 - make inanimate object animate
- Provides visual continuity (and other effects) enhancing perception
 - particularly perception of change
 - hard to follow things that just flash into & out of existence
 - real world doesn't act this way

Why Animation?

- Can also be used to direct attention
 - movement draws attention
 - strong evolutionary reasons
 - Therein lies a danger
 - Overuse tends to demand too much attention
 - e.g., the dreaded paper clip!
- Used sparingly and intelligently, animation can enhance interfaces

Three principles from traditional animation

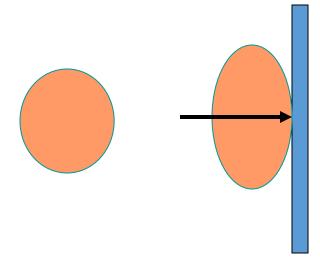
(Not mutually exclusive)

1. Solidity

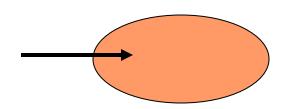
Want objects to appear solid and have mass

2. Exaggeration

Exaggerate certain physical actions to enhance perception


3. Reinforcement

Effects used to drive home feeling of reality


- No teleportation
 - Objects must come from somewhere
 - Not just "pop into existence"
 - Nothing in the real world does this (things with mass can't do this)

- Motion blur
 - If objects move more than their own length (some say 1/2 length) in one frame, motion blur should be used
 - Matches real world perception
 - Makes movement look smoother
 - Doesn't need to be realistic

- Squash and stretch
 - Cartoon objects typically designed to look "squishy"
 - When they stop, hit something, land, etc., they tend to squash
 - Compress in direction of travel

- Squash and stretch
 - Also stretch when they accelerate
 - Opposite direction
 - Basically an approximation of inertia + conservation of volume (area)
- Comment
 - Although S&S makes things look "squishy" they contribute to solidity because they show mass
 - This tends to be exaggerated

- Follow through (& secondary action)
 - Objects don't just stop, they continue parts of the motion
 - e.g., clothes keep moving, body parts keep moving
 - Reinforces that object has mass via inertia
 - (also tends to be exaggerated)

Solidity: Example

- S&S of various parts
- Follow Through
 - Notice feather lags behind character

• From: Thomas & Johnston "The Illusion of Life: Disney Animation", Hyperion, 1981

Exaggeration in Practice

- Cartoon animation tends to do this in a number of ways
 - paradoxically increases realism (liveness) by being less literal
- What is really going on is tweaking the perceptual system at just the right points

Exaggeration in Practice

- Anticipation
 - Small counter movement just prior to the main movement
 - This sets our attention on the object where the action is (or will be)
- Squash & stretch
- Follow through

Reinforcement in Practice

- Slow-in / Slow-out
 - Movement between two points starts slow, is fast in the middle, and ends slow
 - Two effects here
 - Objects with mass must accelerate
 - Interesting parts typically at ends of motion

Reinforcement in Practice

- Movement in arcs
 - Objects move in gently curving paths, not straight lines
 - Movements by "real" animate objects are in arcs (due to mechanics of joints)
 - Most movements in gravity also in arcs

Recap: Animation Principles in Practice

- Appearance of mass
 - Solidity & conservation of volume
 - Several ways to show inertia
- Tweak perception
 - Direct attention to things that count
 - Time on conceptually important parts
- Caricature of reality

Revisit easing functions