8 - human vision and color

Color \& Graphics

- The complete display system is:
- Model
- Frame Buffer
- Screen
- Eye
- Brain

Color \& Vision

- We'll talk about:
- Light

$$
\begin{array}{r}
R G B=\left(\begin{array}{l}
0 \ldots 255) \\
0 \ldots 255) \\
0 \ldots 255
\end{array}\right)
\end{array}
$$

- Vision Human
- Psychophysics, Colorimetry
- Color
- Perceptually based models
- Hardware models

Light

- Vision = perception of electromagnetic energy
- Very small portion of EM spectrum is visible

Copyright 2021 Blair MacIntyre ((CC B Wavelength λ (in nanometers)

Vision: The Eye

- A dynamic, biological camera!
- a lens
- a focal length
- an equivalent of film
$W_{\text {sensitive to luminance, }}^{\text {contrast, motion }}$

Vision: The Retina

- The eye's "film"
- Covered with cells sensitive to light - turn light into electrochemical impulses
- Two types of cells - turn light into electrochemical impulses
- rods
- cones of cells diff parts of
retina

Vision: Rods

- Sensitive to most wavelengths (brightness)
- About 120 million in eye
- Most outside of fovea (center of retina)
- Used for low light vision
- Absorption function:

Vision: Cones
 - Three kinds

- R sensitive to long wavelengths (L in book)
- G to middle (M in book)
- B to short (S in book)
- About 8 million in eye

- Highly concentrated in fovea
- B cones more evenly distributed than others
- Used for high detail color vision
- Nothing special about 3; other animals have different numbers
- Mantis shrimp has 12 or more, but worse discimination

Vision: Cones

- The absorption functions of the cones are:

all 3 absorb some light across full specrun

Psychophysics

- Spectral Energy Distribution

- measure intensity of light at unit wavelength intervals of electromagnetic spectrum from 400 nm to $\sim 700 \mathrm{~nm}$

Copyright 2021 Blair MacIntyre ((CC BY-NC-SA 4.0))

Spectra From Common Sources of Visible Light

Figure 3

Psychophysics

- Dominant Wavelength \cong hue
- Excitation Purity \cong saturation
- Luminance \cong intensity
- Lightness: luminance from a reflecting object
- Brightness: luminance from a light source
- To mix colors
- mix power distributions!

Color Mixing: Additive

- Luminous objects emit s.e.d.
- Linearly add s.e.d.'s
- Primaries: red green blue
- Complements: cyan magenta yellow
- e.g. Monitors, lights

Color Mixing: Subtractive

- Reflective objects absorb (or filter) light
- Can't subtract s.e.d.'s
- Filters: transmission functions
- Pigment: suspension, scattering of light
- Primaries: cyan magenta yellow
- Complements: red green blue
- E.g., ink, film, paint, dye

Colorimetry

- Based on matching colors using additive color mixing

Colorimetric Color Models

- Generated color match functions
- match each wavelength, multiple people
- some colors require negative red!
- CIE produced two device independent models:
- 1931: Measured on 10 subjects (!) on samples subtending 2 (!) degrees of the field of view
- 1964: Measured on larger number of subjects subtending 10 degrees of field of view

Color Match Functions

CIE 1931 Imaginary Primaries

- Defines three new primary "colors"
- X, Y and Z
- Mixtures positive valued
- Y's fen corresponds to luminance-efficiency function
- To define a color
- weight $\$ x, y, z$ for the X, Y, Z primaries (e.g. color $=x X+y Y+z Z$)

CIE 1931 Chromaticity

- X, Y and Z form a three dimensional color volume
- Y is luminance, others aren't intuitive
- Factor luminance by normalizing $x+y+z=1$
- Chromaticity values:
- $x^{\prime}=x /(x+y+z)$
- $y^{\prime}=y /(x+y+z)$
- $z^{\prime}=1-x^{\prime}-y^{\prime}$

xychromaticities

CIE 1931 Chromaticity Diagram

- Chromaticity diagram
- Plot of x^{\prime} vs. y^{\prime}
- Additive color mixing
- linear interpolation
- Color gamuts
- range of possible colors for a device
- convex hull of primary colors
$\mathrm{C}=$ standard illuminant, approximates sunlight, near 4 K white

HDTV (ITU-R BT.709) and sRGB

CIE 1931 Chromaticity Diagram

- Dominant Wavelength/Hue:
- inscribe line from C through color (A) to edge of diagram (H)
- Saturation
- distance C-A distance C-H
- Complements
- inscribe line through C to the edge of the diagram (H^{\prime})
- What if edge is bottom?

Hardware Models: RGB (Additive Color)

- (red, green, blue)
- Parameters vary between 0 and 1

Hard to achieve intuitive effects:

- Hue is defined by the one or two largest parameters
- Saturation controlled by varying the collective minumum value of R, G and B
- Luminance controlled by varying magnitudes while keeping ratios constant

Hardware Models: CMY, CMYK (Subtractive Color)

- (cyan, magenta, yellow, +blacK)
- All parameters vary between 0 and 1

- $K=\min (C, M, Y)$
- subtract K from each

Intuitive Hardware Models: HSV

- (hue, saturation, value)
- value roughly luminance
- hue: (0...360), saturation/value: (0...1)

HSY space

- Simple xform of RGB
- What do hexagonal and triangle cross sections look like?

Intuitive Hardware Models: HLS

- (hue, lightness, saturation)
- lightness roughly luminance
- hue: (0...360), saturation/value: (0...1)

- saturated colors at $\mathrm{I}=0.5$
- tints above, shades below
- What do hexagonal and triangle cross sections look like?

Problem: V/L != Luminance

- Fully saturated colors (same v/I) have far different Y values in XYZ (Sun 17" monitor, 1991):

Colour	RGB	XYZ	Chromaticity
White	111	0.9511 .0001 .088	0.3130 .329
Red	100	0.5890 .2900 .000	0.6700 .330
Green	010	0.1790 .6050 .068	0.2100 .710
Blue	001	0.1830 .1051 .020	0.1400 .080
Cyan	011	0.3620 .7101 .088	0.1680 .329
Magenta	101	0.7720 .3951 .020	0.3630 .181
Yellow	110	0.7680 .8950 .068	0.4440 .517

Problem: None of these models are perceptually uniform

- Perceived distance between two colors not proportional to linear distance
- Uniform Color Spaces
- Non-linear deformations
- OSA Uniform Color Space (limited range)
- CIELUV
- CIELAB

Issue: Device-independent color

- Must use CIEXYZ
- ie. Apple Colorsync
- $R G B=(0.3,0.2,0.55)$ tells you what computer generates, not what the monitor will display!
- Depends on phosphors, room lighting, monitor adjustment
- Moving between devices (and media)
- Go through XYZ
- Must know properties of devices

