
4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 1	

Triangle Meshes	

CS451	

Prof. Jarek Rossignac	

College of Computing	

Georgia Institute of Technology 	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 2	

Lecture Objectives	

•  Learn how to triangulate an unstructured set of points in 3D	

•  Learn the terminology: Incidence, orientation, corner…	

•  Learn how to represent a simple triangle mesh using a Corner

Table data structure	

•  Learn how to build a Corner Table from a Face/Vertex index file	

•  Learn how to implement and use the primary operators for

traversing the mesh	

•  Learn how to traverse the mesh to estimate surface normals at

vertices and to identify the shells	

•  Learn the formula for computing the genus of each shell	

•  Understand the topological limitations of the Corner Table and

how to use it for representing meshes with holes	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 3	

•  For each triangle:	

–  Store the location of its 3 vertices	

•  Each vertex is repeated 6 times (on average)	

•  Expensive to identify an adjacent triangle	

–  Not suited for traversing a mesh	

Representation as independent triangles	

x y z x y z x y z	

x y z x y z x y z	

x y z x y z x y z	

vertex 1	
 vertex 2	
 vertex 3	

Triangle 2	

Triangle 1	

Triangle 3	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 4	

Representing vertices + incidence	

•  Samples: Location of vertices + attributes (color, mass)	

•  Triangle/vertex incidence: specifies the indices of the 3 vertices of each triangle	

–  Eliminates vertex repetition	

–  But still does not support a direct access to neighboring triangles (adjacency)	

Samples
(vertices):	

x y z c	

x y z c	
vertex 1	

vertex 2	

vertex 3	
 x y z c	

Triangle/vertex
incidence:	

3 2 4	

6 5 8	

Triangle 4	
 7 5 6	

Triangle 5	

1 2 3	
Triangle 1	

4 5 2	

Triangle 2	

Triangle 3	

Triangle 6	
 8 5 1	

t3	

v4	

v2	

v5	

Order of vertex
references defines
outward direction
(triangle orientation)	

. . .	
. . .	

. . .	
 . . .	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 5	

Triangle/vertex incidence: identifies corners	

–  Corner: Abstract association of a triangle with a vertex (vertex-use)	

•  A triangle has 3 corners	

•  On average, 6 corners share a triangle	

Corners, incidence and adjacency	

triangle	

vertex	

corner	

edge	

Triangle/triangle adjacency: Identifies
neighboring triangles	

  Neighboring triangles share a common edge	

  Adjacency may be computed from the incidence	

  Adjacency is convenient to accelerate traversal of

triangulated surface	

•  Walk from one triangle to an adjacent one	

•  Estimate surface normals at vertices	

We will use the Corner Table (V and O)
to represent incidence and adjacency	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 6	

•  Integer IDs for vertices (0, 1, 2… V-1) & triangles (0, 1, 2…T-1)	

•  V-table:	

–  Identifies the vertex ID c.v for each corner c	

–  The 3 corners of a triangle are consecutive 	

•  Triangle number: c.t = c DIV 3	

–  Corners order for a triangle respects orientation	

•  Cyclic order in which corners are listed	

•  Next corner around triangle: c.n = 3 c.t + (c+1)MOD 3	

•  Previous corner: c.p=c.n.n	

•  Samples stored in geometry table (G):	

–  Location of vertex v is denoted v.g	

•  Location of vertex of corner c is denoted c.v.g	

–  Implementation as arrays: G[V[c]]	

–  G tables list coordinates for vertex v	

•  v.g = (v.g.x, v.g.y, v.g.z)	

•  or use short cut: (v.x, v.y, v.z)	

vertex 1 x y z	

vertex 2 x y z	

vertex 3 x y z	

vertex 4 x y z	

Representing the incidence as the V table	

Triangle 0 1	

Triangle 0 2	

Triangle 0 3	

Triangle 1 2	

Triangle 1 1 	

Triangle 1 4	

Triangle 2 1	

V	
 G	

c	

c.v	

c.n	

c.t	

c.n.n	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 7	

•  For each corner c store:	

–  c.v : integer reference to an entry in the G table	

•  Content of V[c] in the V table	

–  c.o : integer id of the opposite corner	

•  Content of O[c] in the O table	

•  Computing the O table from V	

For each corner a do For each corner b do 	

	
 	
if (a.n.v==b.p.v && a.p.v==a.n.v) { O[a]:=b; O[b]:=a } ;	

Representing adjacency with the O table	

c.t	

c	

c.v	

c.o	

c.n	
 c.n.n	

vertex 1 x y z	

vertex 2 x y z	

vertex 3 x y z	

vertex 4 x y z	

Triangle 0 corner 0 1 7	

Triangle 0 corner 1 2 8	

Triangle 0 corner 2 3 5	

Triangle 1 corner 3 2 9	

Triangle 1 corner 4 1 6	

Triangle 1 corner 5 4 2	

v o	

1	

2	

3	

4	
0	

1	

2	
 3	

4	
 5	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 8	

1.  List all of triplets {min(c.n.v, c.p.v), max(c.n.v, c.p.v), c}	

–  230, 131, 122, 143, 244, 125, …	

2.  Bucket-sort the triplets: 	

–  122, 125 ...131... 143 ...230...244 …	

3.  Pair-up consecutive entries 2k and 2k+1	

–  (122, 125)...131... 143...230...244…	

4.  Their corners are opposite	

–  (122,125)...131...143...230...244…	

A faster computation of the O table	

Triangle 1 corner 0 1 a	

Triangle 1 corner 1 2 b	

Triangle 1 corner 2 3 c	

Triangle 2 corner 3 2 c	

Triangle 2 corner 4 1 d	

Triangle 2 corner 5 4 e	

v o a	

Triangle 1 corner 0 1 a	

Triangle 1 corner 1 2 b	

Triangle 1 corner 2 3 5 c	

Triangle 2 corner 3 2 c	

Triangle 2 corner 4 1 d	

Triangle 2 corner 5 4 2 e	

v o a	

1	

2	

3	

4	
0	

1	

2	
 3	

4	
 5	

0	

1	

2	
 3	

4	
 5	

1	

2	

3	

4	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 9	

Accessing left and right neighbors	

•  Direct access to opposite corners of right and left neighbors	

  c.r = c.n.o 	

  c.l = c.p.o	

c	

c.v	

c.o	

 c.l = c.p.o	
 c.r = c.n.o	

c.n	
 c.p=c.n.n	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 10	

Summary notation	

•  Given corner c	

–  c.v is the integer ID of its vertex	

•  On average, 6 corners have the same vertex ID	

–  c.v.g is the 3D point where c.v is located (geometry) 	

•  Must use .g for vector operations. Ex: c.n.v.g – c.v.g is vector along edge	

c	

c.v	

c.o	

 c.l	

c.r	

c.n	
 c.p	

c.t	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 11	

Using adjacency table for T-mesh traversal	

•  Visit T-mesh 	

–  Mark triangles as you visit them	

–  Start with any corner c and call Visit(c)	

–  Visit(c) 	

•  mark c.t;	

•  IF NOT marked(c.r.t) THEN visit(c.r);	

•  IF NOT marked(c.l.t) THEN visit(c.l);	

•  Label vertices (for example as 1, 2, 3 …)	

–  Label vertices with consecutive integers	

–  Label(c.n.v); Label(c.n.n.v); Visit(c);	

–  Visit(c) 	

•  IF NOT labeled(c.v) THEN Label(c.v);	

•  mark c.t;	

•  IF NOT marked(c.r.t) THEN visit(c.r);	

•  IF NOT marked(c.l.t) THEN visit(c.l);	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 12	

Estimating a vertex normal	

•  At vertex a having b, c, d, e, f as neighbors	

•  N=ab×ac+ac×ad+ad×ae+ae×af+af×ab	

–  The notation U×V is the cross product of the two vectors	

–  The notation ac is the vector between a and c. In other words: ac=c–a	

–  Note that N is independent of the position of vertex a	

•  (b–a)×(c–a)+(b–a)×(c–a)+… = b×c+a×a–b×a–a×c + c×d+a×a–c×a–a×d +… –a×b +…	

•  a×a = 0 , –a×c and –c×a cancel out, same for all other cross-products containing a	

•  We are left with = b×c + c×d + … which does not depend on a	

•  Then divide N by its norm to make it a unit vector	

a	
 b	

c	

ac	

ab	

ab×ac	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 13	

Exercise	

•  Given corner c, estimate the surface normal n at vertex c.v	

–  Use the sum of cross-products approach proposed above to compute N	

–  Then normalize it to get n 	

•  Remember that n is independent of the position c.v.g of c.v	

c

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 14	

Computing the normal to a patch	

•  Consider a non-planar patch of triangles

in 3D	

•  Consider its border (blue curve)	

–  Border edges have a single incident triangle	

•  Estimate the normal N to the patch as the

sum of the normals to its triangles
weighted by the triangle areas (ab×ac).	

•  The result is independent on the position
of the internal vertices (proof?)	

•  It only depends on the border. 	

•  We could make a triangle-fan with some

point o and compute N	

–  Sum oa×ob for all border edges (a,b)	

•  Or we can use the projections of the
border edges on in the x, y, and z
directions…	

N

N

N

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 15	

Faster computation of the normal N to a patch	

•  N may be computed from the projections of the border edges (a,b)

onto the 3 principal planes:	

•  Compute signed areas of “shadows” of the border loop on the YZ,

ZX, and XY planes	

•  Nz := the sum of signed areas of 2D trapozoids under the projection of (a,b), for

each border edge (a,b). 	

•  Same for Nx and Ny	

c

b

a

x	

y	

a

b

ax	
 bx	

ay	

by	

area(a,b):=(ay+by)(bx–ax)	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 16	

Assume T-mesh is an orientable manifold	

•  A set of triangles forms a manifold mesh when:	

–  The 3 corners of a triangle refer to different vertices (no zero area
triangles)	

–  Each edge bounds exactly 2 triangles 	

–  The star of each vertex v forms a single cone (connected if we remove v)	

•  Star = union of edges and triangles incident upon the vertex	

•  A manifold triangles mesh is orientable when:	

–  Triangle can be oriented consistently	

Non-manifold
vertex	

Non-manifold
edge	

border edges	

Klein bottle	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 17	

Shells: connected portions of T-meshes	

•  All triangles of a shell form a connected set	

•  Two adjacent triangles are connected (through their common edge)	

•  Connectivity is a transitive relation (can identify a mesh by invading it)	

•  To identify a new shell 	

–  Pick a new “color” (ID) and a virgin triangle	

–  Use the Visit(c) procedure to reach all of the triangle of the shell and paint

them	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 18	

•  Handles correspond to through-holes	

–  A sphere has zero handles, a torus has one	

•  The number H of handles is called the genus of the shell	

–  A handle cannot be identified as a particular set of triangles	

•  A T-mesh has k handles if and only if you can remove at most
2k edge-loops without disconnecting the mesh	

•  Genus of a shell may be computed using: H = T/4 – V/2 + 1	

–  Remember as T = 2V – 4 + 4H	

•  In a zero-genus mesh, T = 2V – 4 (Euler-Poincare formula)	

Genus (number of handles) in a shell	

connected	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 19	

Solids and cavities	

•  A solid (here restricted to be a connected manifold polyhedron)

may be represented by its boundary, which may be composed of
one or more manifold shells 	

–  One shell defines the external boundary	

–  The other shells define the boundaries of internal cavities (holes)	

•  All the shells of a solid can be consistently oriented 	

–  It you were a bug sitting on the outward side of an oriented triangle you

would have to turn counterclockwise (with respect to your up vector normal
to the triangle) to look at the vertices in the order in which their IDs are
stored in the V table	

–  The outward side of each triangle must be adjacent to the exterior of the
solid.	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 20	

Examples of questions for tests	

•  Define incidence, adjacency, corner, shell, solid, genus	

•  Difference between handle (through-hole) and hole (cavity)	

•  Explain the content of a corner table	

•  Provide the implementation of the corner operators: c.v, c.o, c.t,

c.n, c.p, c.r, c.l	

•  How can we identify the corner opposite to c using the V table?	

•  Explain how to build a Corner Table from a list of triangles?	

•  How to identify the shells of a mesh represented by a corner table?	

•  How to compute the genus (number fo handles) of each shell?	

•  Can we represent solid by its bounding triangles (not-oriented)	

•  How to test whether a vertex lies inside a solid	

•  How to compute the volume of a solid 	

4/14/11	
 Jarek Rossignac, CoC, GT, ©Copyright 2002	
 Triangle Meshes, slide 21	

Questions to think about	

•  How to pick the proper outward orientation for a triangle 	

•  How to consistently orient the triangles of a shell	

•  How to test whether a point P is inside a shell S	

•  How to identify the shells that bound a solid	

•  How to identify the solids (and their bounding shells) from a

corner table that represents all the triangles	

•  How to orient the shells bounding a solid 	

•  How to identify the non-manifold vertices of a shell	

•  How to test whether a shell is free from self-intersections	

•  How to test whether two shells intersect one another 	

•  What if the triangles do not form a water-tight shell	

